Перевод: с английского на русский

с русского на английский

совместимость устройств

  • 1 совместимость устройств

    Большой англо-русский и русско-английский словарь > совместимость устройств

  • 2 unit-to-unit compatibility

    Большой англо-русский и русско-английский словарь > unit-to-unit compatibility

  • 3 unit-to-unit compatibility

    English-Russian dictionary of computer science and programming > unit-to-unit compatibility

  • 4 unit-to-unit compatibility

    English-Russian information technology > unit-to-unit compatibility

  • 5 unit-to-unit compatibidity

    English-Russian dictionary of computer science > unit-to-unit compatibidity

  • 6 unit-to-unit compatibility

    English-Russian dictionary of computer science > unit-to-unit compatibility

  • 7 commonality

    English-Russian dictionary of telecommunications and their abbreviations > commonality

  • 8 interoperability

    1. функциональная совместимость
    2. операционное взаимодействие
    3. комплексируемость программного средства
    4. интероперабельность
    5. возможность взаимодействия
    6. взаимодействие (сети и системы связи)
    7. взаимодействие

     

    взаимодействие (сети и системы связи)
    Способность двух или нескольких интеллектуальных электронных устройств от одного или от различных поставщиков обмениваться информацией и использовать эту информацию для правильного выполнения заданных функций.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    interoperability
    ability of two or more IEDs from the same vendor, or different vendors, to exchange information and use that information for correct execution of specified functions
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    интероперабельность
    функциональная совместимость
    совместное функционирование сетей

    Возможность совместного использования данных программами на различных компьютерах, разработанных различными фирмами. Для взаимодействия необходимы сети "процесс-процесс", использующие одни и те же сетевые протоколы на всех уровнях.
    [ http://www.morepc.ru/dict/]

    интероперабельность
    способность к взаимодействию

    Способность программ и оборудования на различных компьютерах и других устройствах от разных производителей работать совместно. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    Синонимы

    EN

     

    комплексируемость программного средства
    Совокупность свойств программного средства, характеризующая наличие возможности его взаимодействия при функционировании с заданной номенклатурой других программных средств или систем.
    [ ГОСТ 28806-90]

    Тематики

    Обобщающие термины

    EN

     

    операционное взаимодействие
    Ситуация, при которой платежные инструменты, относящиеся к одной схеме, могут быть использованы в других странах и в системах, работающих в рамках других схем. Операционное взаимодействие требует технической совместимости между системами, но может действовать только там, где были заключены коммерческие соглашения между соответствующими схемами.
    [Глоссарий терминов, используемых в платежных и расчетных системах. Комитет по платежным и расчетным системам Банка международных расчетов. Базель, Швейцария, март 2003 г.]

    Тематики

    EN

     

    функциональная совместимость
    Возможность взаимодействия программных и аппаратных средств разных поставщиков.
    [?]

    Параллельные тексты EN-RU

    Utilities across the world were quick to adopt this standard, enabling high levels of interoperability between devices (even from different manufacturers).
    [ABB]

    Данный стандарт стал активно применяться во многих странах, поскольку он обеспечивает функциональную совместимость устройств различных уровней, в том числе устройств разных производителей.
    [Перевод Интент]

    Обеспечение функциональной совместимости интеллектуальных устройств различных производителей — это один из основных принципов, заложенных в стандарт МЭК 61850. Функциональная совместимость мультивендорных систем может быть обеспечена на различных уровнях:

    • Обмен данными между устройствами одного уровня (например, между устройствами РЗА разных присоединений).

    • Обмен данными между устройствами разных уровней (например, между измерительными устройствами и устройствами РЗА).

    • Обеспечение функциональной совместимости различных устройств при интеграции в единую систему АСУ ТП.

    [ http://www.combienergy.ru/stat1202.html]

    Тематики

    Действия

    • оценка функциональной совместимости интеллектуальных устройств различных производителей

    EN

    3.1.26 функциональная совместимость (interoperability): Способность двух или более систем обмениваться информацией и использовать эту информацию.

    Источник: Р 50.1.041-2002: Информационные технологии. Руководство по проектированию профилей среды открытой системы (СОС) организации-пользователя

    3.2.1 взаимодействие (interoperability): Способность двух или более информационно-технологических систем обмениваться информацией и совместно использовать передаваемую информацию.

    Источник: ГОСТ Р ИСО/МЭК ТО 10000-1-99: Информационная технология. Основы и таксономия международных функциональных стандартов. Часть 1. Общие положения и основы документирования

    3.2.7 взаимодействие (interoperability): Способность двух или более систем обмениваться информацией и совместно использовать передаваемую информацию.

    Источник: ГОСТ Р ИСО/МЭК ТО 10000-3-99: Информационная технология. Основы и таксономия международных функциональных стандартов. Часть 3. Принципы и таксономия профилей среды открытых систем

    Англо-русский словарь нормативно-технической терминологии > interoperability

  • 9 compatibility

    kəmˌpætəˈbɪlɪtɪ сущ. совместимость, совместность, сочетаемость совместимость (психологическая) - lack of * between spouses несовместимость характеров супругов сочетание;
    сочетаемость;
    - the * of such properties in one thing наличие таких свойств в одном предмете (биология) совместимость;
    - blood * совместимость групп крови backward ~ вчт. совместимость сверху вниз binary ~ standard вчт. стандарт совместимости на уровне двоичных команд compatibility совместимость ~ сочетаемость downward ~ вчт. совместимость сверху вниз equipment ~ вчт. аппаратная совместимость firmware ~ вчт. программно-аппаратная совместимость forward ~ вчт. совместимость снизу вверх hardware ~ вчт. аппаратная совместимость hardware ~ вчт. совместимость аппаратуры logic ~ вчт. логическая совместимость network-level ~ вчт. совместимость на сетевом уровне pin ~ вчт. совместимость по выводам pin-for-pin ~ вчт. совместимость по выводам plug-to-plug ~ вчт. полная совместимость program ~ вчт. программная совместимость software ~ вчт. программная совместимость system ~ вчт. совместимость систем systems ~ вчт. совместимость систем type ~ вчт. соответствие типов unit-to-unit ~ вчт. совместимость устройств upward ~ вчт. совместимость снизу вверх windows ~ вчт. совместимость с windows

    Большой англо-русский и русско-английский словарь > compatibility

  • 10 compatibility

    [kəmˌpætəˈbɪlɪtɪ]
    backward compatibility вчт. совместимость сверху вниз binary compatibility standard вчт. стандарт совместимости на уровне двоичных команд compatibility совместимость compatibility сочетаемость downward compatibility вчт. совместимость сверху вниз equipment compatibility вчт. аппаратная совместимость firmware compatibility вчт. программно-аппаратная совместимость forward compatibility вчт. совместимость снизу вверх hardware compatibility вчт. аппаратная совместимость hardware compatibility вчт. совместимость аппаратуры logic compatibility вчт. логическая совместимость network-level compatibility вчт. совместимость на сетевом уровне pin compatibility вчт. совместимость по выводам pin-for-pin compatibility вчт. совместимость по выводам plug-to-plug compatibility вчт. полная совместимость program compatibility вчт. программная совместимость software compatibility вчт. программная совместимость system compatibility вчт. совместимость систем systems compatibility вчт. совместимость систем type compatibility вчт. соответствие типов unit-to-unit compatibility вчт. совместимость устройств upward compatibility вчт. совместимость снизу вверх windows compatibility вчт. совместимость с windows

    English-Russian short dictionary > compatibility

  • 11 compatibidity

    compatibidity: unit-to-unit ~ вчт. совместимость устройств compatibidity: unit-to-unit ~ вчт. совместимость устройств

    Большой англо-русский и русско-английский словарь > compatibidity

  • 12 compatibidity

    compatibidity: unit-to-unit compatibidity вчт. совместимость устройств compatibidity: unit-to-unit compatibidity вчт. совместимость устройств

    English-Russian short dictionary > compatibidity

  • 13 unit-to-unit compatibility

    1) Вычислительная техника: совместимость устройств
    2) Кабельные производство: аппаратная совместимость

    Универсальный англо-русский словарь > unit-to-unit compatibility

  • 14 operational compatibility

    1. эксплуатационная совместимость

     

    эксплуатационная совместимость
    (устройств на ТЭС, АЭС)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > operational compatibility

  • 15 commonality

    [ˌkɒmə'nælɪtɪ]
    1) Общая лексика: общность (нужд), общность (нужд и т.п.), общее
    2) Компьютерная техника: унифицированность
    3) Военный термин: единство образцов вооружения, унификация (напр. образцов вооружения), унификация
    5) Книжное выражение: простой люд, простонародье
    6) Дипломатический термин: совпадение или общность (точек зрения), совпадение точек зрения, общность (точек зрения), совпадение (точек зрения)
    8) Телекоммуникации: совместимость (устройств связи)
    9) Макаров: стандартность

    Универсальный англо-русский словарь > commonality

  • 16 SPD

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > SPD

  • 17 ULP-AMI

    1. активный медицинский имплантат крайне малой мощности

    3.2 активный медицинский имплантат крайне малой мощности (ultra low power active medical implant, ULP-AMI): Радиопередатчик, радиоприемник или приемопередатчик, являющиеся частями активного медицинского имплантата, которые используются в радиолиниях систем связи с медицинскими имплантами, устанавливаемых с помощью периферийных устройств.

    Источник: ГОСТ Р 52459.27-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 27. Частные требования к активным медицинским имплантатам крайне малой мощности и связанным с ними периферийным устройствам оригинал документа

    3.2 активный медицинский имплантат крайне малой мощности (ultra low power - active medical implant, ULP-AMI): Часть активного медицинского имплантата, выполняющая функции по обеспечению радиосвязи.

    Источник: ГОСТ Р 52459.31-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 31. Частные требования к радиооборудованию для активных медицинских имплантатов крайне малой мощности и связанных с ними периферийных устройств, работающему в полосе частот от 9 до 315 кГц оригинал документа

    Англо-русский словарь нормативно-технической терминологии > ULP-AMI

  • 18 surge

    1. помпаж
    2. перенапряжение
    3. колебание (числа оборотов турбины)
    4. импульсное перенапряжение
    5. значительное колебание оборотов (двигателя)
    6. гидравлический удар
    7. выброс тока
    8. выброс напряжения
    9. бросок напряжения

     

    бросок напряжения
    Волна напряжения переходного процесса, распространяющаяся по линии или по цепи и характеризующаяся быстрым нарастанием, за которым следует более медленное снижение напряжения (МСЭ-Т K.43, МСЭ-Т K.48).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    выброс напряжения
    Динамическое изменение напряжения в сети электропитания в виде повышения напряжения за верхний допустимый предел.
    [ ГОСТ 19542-93

    Выброс напряжения – динамическое кратковременное отклонение напряжения с последующим возвращением к исходному значению.

    В отличие от заброса напряжения причинами выброса напряжения могут быть не только изменение нагрузки, но и повреждения электрических сетей, процессы коммутации и др.
    С точки зрения электромагнитной совместимости выброс напряжения рассматривается как помеха, воздействующая на работу технического средства. По длительности и амплитуде выброса напряжения нормативные документы различают несколько степеней жесткости испытаний.

    При испытаниях на устойчивость ТС должно быть подвергнуто воздействию выбросов напряжения не менее трёх раз, с интервалом между ними не менее 10 с.
    Информация об устойчивости цифровых устройств релейной защиты к выбросам напряжения содержится в работе [3].

    Литература
    1. ГОСТ Р 51317.4.1-99 (МЭК 61000-4-11-94). Устойчивость к динамическим изменениям напряжения электропитания. Требования и методы испытаний.
    2. ГОСТ Р 50932-96 Совместимость технических средств электромагнитная. Устойчивость оборудования проводной связи к электромагнитным помехам. Требования и методы испытаний
    3. Захаров О.Г. Требования к портам оперативного питания в технических условиях цифровых устройств релейной защиты. // Вести в электроэнергетике. №5, 2010.//Статью также можно прочесть и на портале «Всё о релейной защите» http://www.rza.org.ua
    4. ГОСТ 23875-88 Качество электрической энергии.Термины и определения [2].
    5. РД 34.35.310-97. Общие технические требования к микропроцессорным устройствам защиты и автоматики энергосистем. М.: ОРГГЭС, 1997 (с изменением №1).

    [ http://maximarsenev.narod.ru/links.html]
     

    Тематики

    EN

     

    выброс тока
    бросок тока
    экстраток


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    гидравлический удар
    Резкое повышение или понижение давления движущейся жидкости при внезапном уменьшении или увеличении скорости потока
    [ ГОСТ 26883-86]

    гидравлический удар
    Удар, создаваемый путем повышения или понижения гидромеханического давления в напорном трубопроводе, вызываемого изменением во времени скорости движения жидкости (газа) в сечении трубопровода.
    [ ГОСТ 15528-86]

    гидравлический удар
    Повышение или понижение гидродинамического давления в напорном трубопроводе, вызванное резким изменением во времени скорости движения жидкости в каком-либо сечении трубопровода.
    Примечание
    Гидравлический удар имеет место при открытии или закрытии затворов, направляющих аппаратов турбин и т.п.
    [СО 34.21.308-2005]

    удар гидравлический
    Резкое повышение давления жидкости в трубопроводе при внезапном изменении скорости потока в случае остановки насосов или быстрого перекрытия трубопровода
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

     

    колебание (числа оборотов турбины)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    перенапряжение в системе электроснабжения
    Превышение напряжения над наибольшим рабочим напряжением, установленным для данного электрооборудования.
    [ ГОСТ 23875-88]

    перенапряжение
    Напряжение между двумя точками электротехнического изделия (устройства), значение которого превосходит наибольшее рабочее значение напряжения.
    [ ГОСТ 18311-80]

    перенапряжение (в сети)
    Любое напряжение между одной фазой и землей или между фазами, имеющее значение, превышающее соответствующий пик наибольшего рабочего напряжения оборудования
    [ ГОСТ Р 52565-2006]

    перенапряжение
    Всякое повышение напряжения сверх амплитуды длительно допустимого рабочего фазного напряжения.
    [Методические указания по защите распределительных электрических сетей напряжением 0,4-10 кВ от грозовых перенапряжений]

    перенапряжение
    Временное увеличение напряжения в конкретной точке электрической системы выше порогового значения.
    [ ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

    перенапряжение
    Возникновение избыточного напряжения, возникающего при сбросе нагрузки или кратковременном воздействии мощных помех. Одним из основных источников перенапряжения являются грозовые разряды в атмосфере, которые могут повредить интерфейсное оборудование, подключенное к кабельным линиям связи.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]


    перенапряжение
    -
    [IEV number 151-15-27]

    EN

    over-voltage
    over-tension

    voltage the value of which exceeds a specified limiting value
    [IEV number 151-15-27]

    voltage swell
    temporary increase of the voltage magnitude at a point in the electrical system above a threshold
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    FR

    surtension, f
    tension électrique dont la valeur dépasse une valeur limite spécifiée
    [IEV number 151-15-27]

    surtension temporaire à fréquence industrielle
    augmentation temporaire de l’amplitude de la tension en un point du réseau d’énergie électrique au-dessus d’un seuil donné
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Смотри также

     

    помпаж
    Неустойчивый режим работы турбокомпрессора, характеризующийся последовательно чередующимся нагнетанием газа в сеть и выбрасыванием газа из сети на всасывание.
    [ ГОСТ 28567-90]

    Тематики

    EN

    3.1.24 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.35 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Англо-русский словарь нормативно-технической терминологии > surge

  • 19 type test

    1. типовые испытания системы автоматизации подстанции
    2. типовые испытания НКУ
    3. типовые испытания (трансформатора)
    4. типовые испытания
    5. типовое испытание
    6. испытания типа
    7. испытания на соответствие функциональным требованиям
    8. испытание типа (во взрывозащите)
    9. испытание типа

     

    испытание типа
    Испытание одного или нескольких устройств определенной конструкции с целью установления соответствия данной конструкции определенным требованиям (МЭК 60050-151, статья 151-04-15) [15].
    [ ГОСТ Р МЭК 60050-426-2006]


    Тематики

    EN

     

    типовое испытание
    Испытание одного или нескольких аппаратов одной определенной конструкции для доказательства, что эта конструкция отвечает определенным техническим условиям.
    МЭК 60050(151-04-15).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    EN

    type test
    conformity test made on one or more items representative of the production
    Source: ISO/IEC Guide 2 (14.5 MOD)
    [IEV number 151-16-16]

    FR

    essai de type, m
    essai de conformité effectué sur une ou plusieurs entités représentatives de la production
    Source: ISO/CEI Guide 2 (14.5 MOD)
    [IEV number 151-16-16]

    Тематики

    • электротехника, основные понятия

    EN

    DE

    FR

     

    типовые испытания
    Ндп. проверочные испытания
    Контрольные испытания выпускаемой продукции, проводимые с целью оценки эффективности и целесообразности вносимых изменений в конструкцию, рецептуру или технологический процесс
    [ ГОСТ 16504-81]

    типовые испытания
    Контрольные испытания изделий, проводимые при освоении производства, а также после внесения изменений в конструкцию или технологию изготовления для оценки эффективности и целесообразности внесенных изменений.
    [ ГОСТ 1282-88]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    FR

     

    типовые испытания
    Испытания, проводимые на образце, представляющем данный тип трансформатора, на его соответствие всем требованиям НД, в том числе тем, которые не включены в объем приемосдаточных испытаний.
    Примечание — В качестве испытуемого образца выбирают трансформатор, полностью идентичный в отношении номинальных данных и конструкции трансформатору данного типа; однако типовое испытание допускается проводить на трансформаторе, номинальные и другие характеристики которого незначительно отличаются от аналогичных у трансформаторов данного типа. Эти отличия должны быть указаны в НД на конкретные виды испытаний.
    [ ГОСТ 30830-2002]

    Тематики

    Классификация

    >>>

    Обобщающие термины

    EN

     

    типовые испытания НКУ
    -

    Типовые испытания предназначены для проверки соответствия НКУ техническим требованиям настоящего стандарта. Типовые испытания проводят на одном или нескольких типопредставителях НКУ.
    Типовые испытания некоторых видов допускается проводить на частях НКУ.
    Испытания и проверки допускается проводить в любом порядке и/или на различных образцах.
    Типовые испытания проводят также полностью или частично при внесении в конструкцию НКУ изменений, которые могут отрицательно влиять на технические характеристики НКУ.

    Перечень проверок и испытаний, проводимых на НКУ

    [ ГОСТ 22789-94( МЭК 439-1-85) ]

    Параллельные тексты EN-RU

    The term type test defines the tests intended to assess the validity of a project according to the expected performances
    Such tests are usually carried out on one or more prototypes and the results of these type tests are assumed to obey to deterministic laws.
    Therefore these results can be extended to all the production, provided that it complies with the design of the tested samples.

    [ABB]

    Термин типовые испытания определяет испытания, целью которых является доказательство, что испытываемое устройство отвечает определенным техническим требованиям.
    Такие испытания обычно проводят на одном или нескольких типопредставителях, и считают, что полученные результаты являются детерминированными.
    Поэтому их можно применить ко всем изделиям, конструкция которых соответствует испытанным образцам.

    [Перевод Интент]

    In TTA the verification of the temperature-rise limits shall be carried out through type tests.
    [ABB]

    В ПИ НКУ проверка предельных значений превышения температуры должна выполняться в процессе проведения типовых испытаний.
    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

     

    типовые испытания системы автоматизации подстанции
    Проверка правильности работы интеллектуальных электронных устройств в системе автоматизации подстанции с использованием системно проверенной программы в условиях климатических испытаний, определенных в технических данных. Примечание. Эти испытания означают заключительный этап в разработке аппаратной части интеллектуальных электронных устройств и являются исходным условием для начала серийного производства. Эти испытания следует проводить для тех интеллектуальных электронных устройств, которые были изготовлены в процессе нормального производственного цикла.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    type test
    verification of correct behaviour of the IEDs of the SAS by use of the system tested software under the environmental test conditions stated in the technical data. This test marks the final stage of IED hardware development and is the precondition for the start of full production. This test must be carried out with IEDs that have been manufactured through the normal production cycle
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

    3.28 испытание типа (type test): Испытание на одном или более соединителе, проведенное для определенной конструкции, чтобы показать, что конструкция удовлетворяет определенным характеристикам.

    Источник: ГОСТ Р 51322.1-2011: Соединители электрические штепсельные бытового и аналогичного назначения. Часть 1. Общие требования и методы испытаний оригинал документа

    3.9 испытание типа (type test): Испытание или серия испытаний, проводимых на выборке для испытания типа для проверки соответствия конструкции данного изделия требованиям настоящего стандарта.

    Источник: ГОСТ Р 53881-2010: Лампы со встроенными пускорегулирующими аппаратами для общего освещения. Требования безопасности оригинал документа

    3.24 типовое испытание (type test): Испытание одного или более устройств определенной конструкции, проводимое для того, чтобы показать, что данная конструкция соответствует определенным техническим характеристикам (МЭС 151-04-15) [1].

    Источник: ГОСТ Р МЭК 60079-2-2009: Взрывоопасные среды. Часть 2. Оборудование с защитой вида заполнение или продувка оболочки под избыточным давлением "р" оригинал документа

    3.40 испытания типа (type test): Испытание, проводимое на одном или более устройствах определенной конструкции для проверки ее соответствия определенным требованиям.

    Источник: ГОСТ Р МЭК 60079-30-1-2009: Взрывоопасные среды. Резистивный распределенный электронагреватель. Часть 30-1. Общие технические требования и методы испытаний оригинал документа

    2.8 типовое испытание (type test): Испытание или серия испытаний, проводимые на выборке для типовых испытаний с целью проверки соответствия конструкции конкретного патрона требованиям настоящего стандарта.

    Источник: ГОСТ Р МЭК 60838-1-2008: Патроны различные для ламп. Часть 1. Общие требования и методы испытаний оригинал документа

    1.2.13.1 типовое испытание (type test): Испытание предоставленного образца оборудования с целью определить его соответствие требованиям настоящего стандарта.

    Источник: ГОСТ Р МЭК 60950-1-2009: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    1.2.13.1 типовое испытание (type test): Испытание представленного образца оборудования с целью определить его соответствие требованиям настоящего стандарта.

    Источник: ГОСТ Р МЭК 60950-1-2005: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    3.31 типовое испытание (type test): Испытание одной или более машин определенной конструкции, проводимое для подтверждения соответствия данного типа машины определенным требованиям.

    Примечание - Типовое испытание может быть признано успешным, если оно проводилось на машине, которая имеет незначительные отклонения от номинальных данных или других характеристик, которые находятся в пределах допускаемых отклонений. Эти отклонения должны быть согласованы.

    Источник: ГОСТ Р 52776-2007: Машины электрические вращающиеся. Номинальные данные и характеристики оригинал документа

    3.22 типовое испытание (type test): Испытание на соответствие конструкции, которое проводится один раз и повторяется только после изменения конструкции.

    Источник: ГОСТ Р ИСО 2531-2008: Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водо- и газоснабжения. Технические условия оригинал документа

    1.3.20 испытание типа (type test): Испытание или серия испытаний, проводимые на выборке для испытания типа для проверки соответствия конструкции данного изделия требованиям соответствующего стандарта.

    Источник: ГОСТ Р 53879-2010: Лампы со встроенными пускорегулирующими аппаратами для общего освещения. Эксплуатационные требования оригинал документа

    3.21 типовое испытание (type test): Испытание на соответствие, проводимое на одном или более образцах, представляющих продукцию.

    (IEV 394-40-02)

    Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа

    3.8 испытание типа (type test): Испытание или серия испытаний, проводимых на выборке для испытания типа для проверки соответствия конструкции данного изделия требованиям настоящего стандарта.

    Источник: ГОСТ Р МЭК 62560-2011: Лампы светодиодные со встроенным устройством управления для общего освещения на напряжения свыше 50 В. Требования безопасности оригинал документа

    3.22 типовое испытание (type test): Испытание на соответствие конструкции, которое проводится один раз и повторяется только после изменения конструкции.

    Источник: ГОСТ ISO 2531-2012: Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водо- и газоснабжения. Технические условия

    3.13 испытание типа (type test): Испытание или серия испытаний, проводимые на выборке для испытания типа в целях проверки соответствия конструкции данного изделия требованиям настоящего стандарта.

    Источник: ГОСТ Р 54815-2011: Лампы светодиодные со встроенным устройством управления для общего освещения на напряжения свыше 50 В. Эксплуатационные требования оригинал документа

    1.2.44 типовое испытание (type test): Испытание или серия испытаний, проводимых на выборке для типовых испытаний в целях проверки соответствия конструкции светильника конкретного типа требованиям соответствующего стандарта.

    Источник: ГОСТ Р МЭК 60598-1-2011: Светильники. Часть 1. Общие требования и методы испытаний оригинал документа

    Англо-русский словарь нормативно-технической терминологии > type test

  • 20 AMI

    1. чередование полярности посылок
    2. обмен речевыми сообщениями
    3. кодирование с чередованием полярности
    4. запрет на автоматическое перемещение
    5. биполярный код
    6. активный медицинский имплантат

     

    биполярный код
    код с чередованием полярности импульсов


    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    Синонимы

    EN

     

    запрет на автоматическое перемещение
    (стержней системы управления и защиты в активной зоне ядерного реактора)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    кодирование с чередованием полярности
    Метод кодирования, который основан на использовании трех уровней сигнала - нулевого, положительного и отрицательного. При использовании AMI передаваемый сигнал представляет собой последовательность разнополярных импульсов, что обеспечивает сравнительно легкое распознавание ошибок (по нарушению закона чередования полярностей).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    обмен речевыми сообщениями

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    чередование полярности посылок
    кодирование кодом с чередованием полярности


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

    3.1 активный медицинский имплантат (active medical implant, AMI): Диагностическое или терапевтическое устройство, предназначенное для имплантирования в тело человека, имеющее источник питания и приемопередатчик, работающий в полосе частот, выделенной для обеспечения двусторонней цифровой связи.

    Источник: ГОСТ Р 52459.27-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 27. Частные требования к активным медицинским имплантатам крайне малой мощности и связанным с ними периферийным устройствам оригинал документа

    3.1 активный медицинский имплантат (active medical implant, AMI): Диагностическое или терапевтическое устройство, предназначенное для имплантирования в тело человека, имеющее источник питания и приемопередатчик для обеспечения двусторонней цифровой связи.

    Источник: ГОСТ Р 52459.31-2009: Совместимость технических средств электромагнитная. Технические средства радиосвязи. Часть 31. Частные требования к радиооборудованию для активных медицинских имплантатов крайне малой мощности и связанных с ними периферийных устройств, работающему в полосе частот от 9 до 315 кГц оригинал документа

    Англо-русский словарь нормативно-технической терминологии > AMI

См. также в других словарях:

  • совместимость устройств — įrenginių suderinamumas statusas T sritis automatika atitikmenys: angl. unit to unit compatibility vok. Einheitenkompatibilität, f rus. совместимость устройств, f pranc. compatibilité entre équipements, f …   Automatikos terminų žodynas

  • СОВМЕСТИМОСТЬ — (1) способность устройств или систем, отличающихся конструктивными особенностями, выполнять идентичные функции; (2) возможность совместной работы различных устройств при заданных условиях без использования специальной аппаратуры сопряжения и без… …   Большая политехническая энциклопедия

  • СОВМЕСТИМОСТЬ — (compatibility) Способность двух или более различных типов компьютеров работать с одними и теми же программами и данными. Компьютеры называют совместимыми, если один и тот же машинный код (machine code) без внесения каких либо изменений читается… …   Словарь бизнес-терминов

  • совместимость — 06.01.127 совместимость [ compatibility]: Пригодность продукции, процессов или служб для совместного использования при условии удовлетворения заданным требованиям без возникновения недопустимых последствий от их совместного применения. Пример… …   Словарь-справочник терминов нормативно-технической документации

  • совместимость РЭС (по интерфейсу) — 3 совместимость РЭС (по интерфейсу): Способность радиоэлектронных средств непосредственно без использования дополнительных переходных устройств взаимодействовать друг с другом на различных уровнях Источник: ГОСТ Р 50304 92: Системы для сопряжения …   Словарь-справочник терминов нормативно-технической документации

  • совместимость сигналограмм — 88 совместимость сигналограмм: Возможность воспроизведения информации, содержащейся в сигналограмме, с заданной достоверностью, при помощи устройств воспроизведения или записи воспроизведения, в которых предусмотрено использование формата… …   Словарь-справочник терминов нормативно-технической документации

  • Совместимость РЭС (по интерфейсу) — 1. Способность радиоэлектронных средств непосредственно без использования дополнительных переходных устройств взаимодействовать друг с другом на различных уровнях Употребляется в документе: ГОСТ Р 50304 92 Системы для сопряжения радиоэлектронных… …   Телекоммуникационный словарь

  • функциональная совместимость — Возможность взаимодействия программных и аппаратных средств разных поставщиков. [?] Параллельные тексты EN RU Utilities across the world were quick to adopt this standard, enabling high levels of interoperability between devices (even from… …   Справочник технического переводчика

  • эксплуатационная совместимость — (устройств на ТЭС, АЭС) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN operational compatibility …   Справочник технического переводчика

  • РД 50-726-93: Совместимость технических средств, размещаемых на морских подвижных объектах, электромагнитная. Нормы, правила обеспечения и методы комплексной оценки — Терминология РД 50 726 93: Совместимость технических средств, размещаемых на морских подвижных объектах, электромагнитная. Нормы, правила обеспечения и методы комплексной оценки: Абсолютное значение мощности побочных излучений Значение уровня… …   Словарь-справочник терминов нормативно-технической документации

  • РД 50-713-92: Методические указания. Совместимость технических средств электромагнитная. Электромагнитная обстановка. Виды низкочастотных кондуктивных помех и сигналов, передаваемых по силовым линиям, в системах электроснабжения общего назначения — Терминология РД 50 713 92: Методические указания. Совместимость технических средств электромагнитная. Электромагнитная обстановка. Виды низкочастотных кондуктивных помех и сигналов, передаваемых по силовым линиям, в системах электроснабжения… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»